注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

Emix

Let Your Creativity Fly...

 
 
 

日志

 
 

统计学一些经典书籍  

2013-06-26 09:59:34|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
Probability & Measure:
Probability Theory: Theory and Examples, 3rd edition, Richard Durrett 国内有第2版影印本
Probability and Measure, Patrick Billingsley
Convergence of Probability Measures, Patrick Billingsley
A Course in Probability Theory Revised, Kai Lai Chung

Mathematical Statitsics:
Introduction to Mathematical Statistics, Hogg & Craig (高教社出了第5版影印本)
Mathematical Statistics, Jun Shao
Mathematical Statistics, Peter J. Bickle
作为数理统计学的课本不错。茆诗松、王静龙的《高等数理统计》是国内用得很多的课本。

Inference:
Statistical Inference, Casella & Berger 是国外读统计基本必修的的一本书,国内有影印本。All of Statistics: A Concise Course in Statistical Inference, Larry Wasserman 是一本涵盖面很广的速成式的lecture notes样式的书,偏nonparametric。Theory of Statistics, Schervish 偏Bayesian和decision theory。此外还有: Testing Statistical Hypotheses, Lehmann & Romano, Theory of Point Estimation, Lehmann & Casella。更多的advanced topics举不胜举。

Asymptotics & large sample theory:
A Course in Large Sample Theory, Ferguson 是很好的教本,
Asymptotic Statistics, A. W. van der Vaart
Elements of Large Sample Theory, Lehmann
Approximation Theorems of Mathematical Statistics, Serfling

Linear Models & Regression:
Applied Linear Statistical Models, Kutner et al 或者 Introduction to Linear Regression Analysis, 3ed. Montgomery, Peck, Vining可以作为入门的Regression的教本。
C. R. Rao的Linear Statistical Inference and Its Application很值得看一看。Linear Regression Analysis, Seber & Lee写得也不错。国内写得很不错的教本是王松桂写的《线性模型引论》,科学出版社,但是稍有一些错误。

Generalized Linear Models数McCullagh & Nelder 最经典,入门可以用An Introduction to Generalized Linear Models, 3ed, Dobson & Barnett。
Generalized Linear Models: A Bayesian Perspective, Dey, Ghosh, Mallick
Categorical Data Analysis, Agresti是Categorical的经典。SAS和R做Categorical的手册都有出版,对于应用统计的research来说Categorical是很基本的。

Generalized, Linear, and Mixed Models, McCulloch & Seale
Linear Mixed Models for Longitudinal Data, Verbeke & Molenberghs
Semiparametric Regression, Ruppert, Wand, Carroll里面把nonpar & semipar和mixed model统一起来
SAS for Mixed Models, 2ed 和 Mixed Effects Models in S and S-Plus, Pinheiro & Bates 实现

An Introduction to Multivariate Statistical Analysis, T.W. Anderson
Aspects of Multivariate Statistical Theory, Muirhead
Applied Multivariate Statistical Analysis, 6ed, Johnson and Wichern 国内有第6版影印本

Bayesian Data Aanlysis, Gelman, Carlin, Stern, Rubin
Bayesian Methods for Data Analysis, 3rd edition, Carlin & Louis
Statistical Decision Theory and Bayesian Analysis, James O. Berger
Theory of Statistics, Schervish
The Bayesian Choice, Christian P. Robert
Bayesian Theory, Bernardo & Smith
Generalized Linear Models: A Bayesian Perspective, Dey, Ghosh, Mallick
MCMC比较好的书有
Markov Chain Monte Carlo in Practice, Gilks & Richardson & Spiegelhalter
Monte Carlo Strategies in Scientific Computing, Jun S. Liu
Monte Carlo Statistical Methods, Robert & Casella

Nonparametric & Semiparametric:
Semiparametric Regression, Ruppert, Wand, Carroll
Applied Nonparametric Regressions, Wolfgang H?rdle
Nonparametric and Semiparametric Models, Wolfgang H?rdle et al
Efficient and Adaptive Estimation for Semiparametric Models, Bickel et al
All of Nonparametric Statistics, Larry Wasserman
Nonparametrics: Statistical Methods Based on Ranks, Erich L. Lehmann
Generalized Additive Models, Hastie & Tibshirani
此外,推荐 Empirical Likelihood, Owen

Analysis of Longitudinal Data, Diggle, Heagerty, Liang, Zeger
Applied Longitudinal Analysis, Fitzmaurice, Laird, Ware
Linear Mixed Models for Longitudinal Data, Verbeke & Molenberghs
Missing Data & Causal Inference 比较好的书有
Statistical Analysis with Missing Data 2ed, Little & Rubin
Missing Data in Clinical Studies, Molenberghs & Kenward
Semiparametric Theory and Missing Data, Tsiatis
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives这本书是Rubin这派几代人对causal inference的一个集成
Robins这派的东西就看paper吧,Robins & Morgan 09年也会出一本书
Unified Methods for Censored Longitudinal Data and Causality,
  评论这张
 
阅读(742)| 评论(1)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017